首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   5篇
  国内免费   32篇
测绘学   2篇
大气科学   3篇
地球物理   16篇
地质学   65篇
海洋学   2篇
综合类   1篇
自然地理   1篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   9篇
  2016年   3篇
  2015年   11篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
71.
The Pozanti-Karsanti ophiolite(PKO)in Turkey’s eastern Tauride belt comprises mantle peridotites,ultramafic to mafic cumulates,isotropic gabbros,sheeted dikes and pillow lavas.The mantle peridotites are dominated by spinel harzburgites with minor dunites.The harzburgites and dunites have quite depleted mineral and whole-rock chemical composition,suggesting high degrees of partial melting.Their PGEs vary from Pd-depleted to distinct Pd-enriched patterns,implying the crystallization of interstitial sulphides from sulphur-saturated melts(e.g.MORB-like forearc basalt).U-shaped or spoon-shaped REE patterns indicate that the PKO peridotites may have also been metasomatized by the LREE-enriched fluids released from a subducting slab in a suprasubduction zone.Based on the mineral and whole-rock chemical compositions,the PKO peridotites show affinities to forearc peridotites.Chromitites occur both in the mantle peridotites and the mantle-crust transition zone horizon(MTZ).Chromitites from the two different horizons have different textures but similar mineral compositions,consistent with typical high-Cr chromitites.Chromitites hosted by mantle harzburgites generally have higher total platinum-group element(PGE)contents than those of the MTZ chromitites.However,both chromitites show similar chondritenormalized PGE patterns characterized by clear IPGEs,Rh-enrichments relative to Pt and Pd.Such PGE patterns indicate no or only minor crystallization of Pt-and Pd enriched sulphides during formation of chromitites from a sulphur-undersaturated melt(e.g.boninitic or island arc tholeiitic melt).Dunite enveloping chromitite lenses in the ho*s ting harzburgite resulted from melt-rock reaction.We have performed mineral separation work on samples of podiform chromitite hosted by harzburgites.So far,more than200 grains of microdiamond and more than 100 grains of moissanite(Si C)have been separated from podiform chromitites.These minerals have been identified by EDX and Laser Raman analyses.The diamonds and moissanite are accompanied by large amounts of rutile.Additionally,zircon,monazite and sulphides are also common phases within the heavy mineral separates.Both diamond and moissanite have been analyzed for carbon and nitrogen isotopic composition using the CARMECA 1280-HR large geometry Secondary Ion Mass Spectrometer at the Helmholtz Zentrum Potsdam.In total,61δ13CPDB results for diamond were acquired,exhibiting a range from-28.4‰to-18.8‰.31δ13CPDB results for Moissanite vary between-30.5‰to-27.2‰,with a mean value of-29.0‰.Diamond has relatively large variation in nitrogen isotopic composition with 40δ15NAIR results ranging from-19.1‰to 16.6‰.The discovery of diamond,moissanite and the other unusual minerals from podiform chromitite of the Pozanti-Karsanti ophiolite provides new support for the genesis of ophiolitic peridotites and chromitites under high-pressure and ultra-high reducing conditions.Considering the unusual minerals,the high Mg#silicate inclusions,and the needle-shaped exsolutions in the PKO chromitites,the parental melts of these chromitites may have been mixed with deep asthenospheric basaltic melts that had assimilated materials of the descending slab when passing through the slab in a subduction zone environment.We suggest melt-rock reactions,magma mixing and assimilation may have triggered the oversaturation of chromites and the formation of PKO chromitites.  相似文献   
72.
Various combinations of diamond, moissanite, zircon, corundum, rutile and titanitehave been recovered from the Bulqiza chromitites. More than 10 grains of diamond have been recovered, most of which are pale yellow to reddish–orange to colorless. The grains are all 100–300 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm~(-1) and 1333 cm~(-1), mostly at 1331.51 cm~(-1) or 1326.96 cm~(-1). This investigation extends the occurrence of diamond and moissanite to the Bulqiza chromitites in the Eastern Mirdita Ophiolite. Integration of the mineralogical, petrological and geochemical data of the Bulqiza chromitites suggests their multi–stage formation. Magnesiochromite grains and perhaps small bodies of chromitite formed at various depths in the upper mantle, and encapsulated the ultra–high pressure, highly reduced and crustal minerals. Some oceanic crustal slabs containing the magnesiochromite and their inclusion were later trapped in suprasubduction zones, where they were modified by tholeiitic and boninitic arc magmas, thus changing the magnesiochromite compositions and depositing chromitite ores in melt channels.  相似文献   
73.
We report new δ13C ‐values data and N‐content and N‐aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray‐Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have δ13C ‐PDB‐values ranging from ‐28.7‰ to ‐16.9‰, and N‐contents from 151 to 589 atomic ppm. The δ13C and N‐content values for diamonds from the Luobusa chromitites are ‐29‰ to ‐15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray‐Iz chromitites show values varying from ‐27.6 ‰ to ‐21.6 ‰ in δ13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N‐contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced δ13C ‐variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N‐aggregation state and N‐content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.  相似文献   
74.
75.
76.
77.
We present new, whole-rock major and trace element chemistry, including rare earth elements (REE), platinum-group elements (PGE), and Re–Os isotope data from the upper mantle peridotites of a Cretaceous Neo-Tethyan ophiolite in the Mu?la area in SW Turkey. We also report extensive mineral chemistry data for these peridotites in order to better constrain their petrogenesis and tectonic environment of formation. The Mu?la peridotites consist mainly of cpx-harzburgite, depleted harzburgite, and dunite. Cpx-harzburgites are characterized by their higher average CaO (2.27 wt.%), Al2O3 (2.07 wt.%), REE (53 ppb), and 187Os/188Os(i) ratios varying between 0.12497 and 0.12858. They contain Al-rich pyroxene with lower Cr content of coexisting spinel (Cr# = 13–22). In contrast, the depleted harzburgites and dunites are characterized by their lower average CaO (0.58 wt.%), Al2O3 (0.42 wt.%), and REE (1.24 ppb) values. Their clinopyroxenes are Al-poor and coexist with high-Cr spinel (Cr# = 33–83). The 187Os/188Os(i) ratios are in the range of 0.12078–0.12588 and are more unradiogenic compared to those of the cpx-harzburgites.Mineral chemistry and whole rock trace and PGE data indicate that formation of the Mu?la peridotites cannot be explained by a single stage melting event; at least two-stages of melting and refertilization processes are needed to explain their geochemical characteristics. Trace element compositions of the cpx-harzburgites can be modeled by up to ~ 10–16% closed-system dynamic melting of a primitive mantle source, whereas those of the depleted harzburgites and dunites can be reproduced by ~ 10–16% open-system melting of an already depleted (~ 16%) mantle. These models indicate that the cpx-harzburgites are the products of first-stage melting and low-degrees of melt–rock interaction that occurred in a mid-ocean ridge (MOR) environment. However, the depleted harzburgites and dunites are the product of second-stage melting and related refertilization which took place in a supra subduction zone (SSZ) environment. The Re–Os isotope systematics of the Mu?la peridotites gives model age clusters of ~ 250 Ma, ~ 400 Ma and ~ 750 Ma that may record major tectonic events associated with the geodynamic evolution of the Neo-Tethyan, Rheic, and Proto-Tethyan oceans, respectively. Furthermore, > 1000 Ma model ages can be interpreted as a result of an ancient melting event before the Proto-Tethys evolution.  相似文献   
78.
Rapid land use/land cover changes have taken place in many cities of Turkey. Land use and land cover changes are essential for wide range of applications. In this study, Landsat TM satellite imageries date from 1987, 1993, 2000 and 2010 were used to analyse temporal and spatial changes in the Western Black Sea Region of Turkey. Zonguldak and Eregli two largest and economic important cities which have been active coal mining and iron fabric areas. Maximum Likelihood Classification technique was implemented and the results were represented in classes of open area, forest, agricultural, water, mining, urban and pollution in the sea. Urban areas on both cities increased from 1987 to 2010. The agricultural and open areas from 1987 to 2010 decreased in parallel to land use and land cover change in both cities. Meanwhile, forest areas increased continuously with about 20 % from 1987 to 2010 in both cities. As industrial activity, the coal fields doubled from 1987 to 2010.  相似文献   
79.
Sludge pretreatment prior to anaerobic digestion has been found to reduce sludge production in wastewater treatment. Sludge disintegration using physical, chemical, biological, or mechanical methods can increase biogas production and reduce sludge quantities. Ultrasonication is one of the most effective means of mechanical disintegration. This study aims to investigate ultrasonication as a means for solubilizing waste activated sludge (WAS) to enhance its digestability. Sonication was applied by the use of two different probes providing different powers and energies into the sludge after which the soluble chemical oxygen demand (sCOD) increases were measured. The samples were then digested anaerobically in 250 mL serum bottles for about 50 days. Along with the biogas measurements, the rate of methane production is calculated to be able to quantify the effect of pretreatment and compare the results between different applications. The results showed that with the increase of sonication power and sonication time, sCOD increased. An introduction of higher sonication energy made the sCOD rise sharply, however, this increase was not indefinite; it became gradually lower with the further increase of energy. The results indicated that specific methane production, specific methane yield, and the first order methane generation rate increased with increasing energy input.  相似文献   
80.
The well-preserved extrusive sequence of the Solund-Stavfjord Ophiolite Complex (SSOC) in the West Norwegian Caledonides enables reconstruction of the uppermost oceanic crust that developed in a marginal basin. Basaltic sheet flows, pillow lavas and volcanic breccias are the main components of the extrusive sequence and show stratigraphic and structural evidence for a cyclic development. The first stage in a volcanic cycle is characterized by high extrusion rates yielding sheet flows, commonly with the thickest flow units at the base. Sequences of sheet flows can be correlated laterally for at least 6.5 km. Pillow lavas succeed the sheet flows later in a volcanic cycle with progressively smaller pillows forming at decreasing extrusion rates. Volcanic breccias occur towards the end of a volcanic cycle, but may also occur at lower stratigraphie levels. They are made generally of pillow breccias and hyaloclastites. The extrusive sequence of the SSOC oceanic crust was constructed through seven volcanic cycles that resulted in stratigraphic units with thicknesses ranging from 40 to 225 m. This architecture is comparable to sequences in in situ oceanic crust developed along slow- to intermediate-spreading ridges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号